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Abstract

A new stress-accommodating crystallographic mechanism of the δ→α 
martensitic transformation in plutonium alloys is proposed. According to this 
mechanism, an orientation variant of the α phase is produced by a combination of 
a homogeneous strain and shuffling of the alternating close-packed (111)δ planes. 
It is shown that the formation of stable transformation-induced twins whose twin 
plane orientations and twin shear directions do not depend on the small variations 
of the crystal lattice parameters is the preferred stress-accommodating mode. 
Only these stable twins have dislocation-free twin boundaries while the twin 
boundaries of all others are decorated by ultra-dense distribution of partial 
dislocations. The theory predicts a crystal lattice rearrangement mechanism 
involving the (205)α ( δ)101( ) stable twins. The corresponding Invariant Plane 
Strain solutions, with special emphasis on two simplest shuffling modes, the 
single and double elementary modes, are presented and compared with the 
existing experimental observations. It is shown that the habit plane orientation is 
highly sensitive to the input values of the crystal lattice parameters and especially 
to the accuracy of the measured volume change in the δ→α transformation. An 
analysis of these effects on the habit plane orientation and orientation relations is 
also presented. 

1. Introduction

Research on plutonium metal and its alloys has been carried out due to its extreme 
importance as a reactive nuclear metal and because of its unique physical properties. 
Plutonium transforms between six distinct crystallographic phases (the most of any 
element) when heated to its melting point from room temperature under atmospheric 
pressure. The low-symmetry monoclinic α phase is stable at room temperature, but it is a 
brittle material difficult for machining. The high temperature δ phase has the face-
centered cubic (FCC) structure, which is ductile enough to be machined and can be 
stabilized down to relatively low temperatures by alloying it with a small amount of 
gallium. However, δ phase is not stable under pressure or at cryogenic temperatures  it 
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transforms to the α phase with a volume change (contraction) as much as 20% (the 
largest such change known). The reversal of this transformation occurs under hydrostatic 
tension or heating. The study of the phase transformation between δ and α phases is an 
important topic both technically and scientifically. Although it is common practice to 
distinquish between the equilibrium α phase with a low gallium content and a metastable 
α� phase formed martensitically that has a supersaturation of gallium [1], in this paper, we 
refer to both forms as α. A comprehensive review on the physical properties of plutonium 
and relevant research works can be found in [1].

The δ→α transformation is a martensitic (displacive) transformation [2]. The 
unusually large volume change distinguishes it from other martensitic transformations 
(MTs) and makes it an interesting topic from both scientific and engineering viewpoints. 
A starting point of any study of MTs is establishing the Bain distortion, i.e., the crystal 
lattice rearrangement that transforms the homogeneous parent lattice into the 
homogeneous lattice of the martensitic phase. Finding the Bain distortion requires a 
determination of the crystal lattice correspondence between the crystal lattices of the 
parent and martensitic phases. So far, this correspondence has not been clearly defined 
experimentally due to the complicated α phase crystallography and limited experiments.

The theoretical investigation of this system plays an especially important role because 
of the difficulties in its experimental study. There are several aspects of the MT in 
plutonium that have to be addressed. They are the morphology of the martensitic phase, 
the transformation hysteresis, and the response to applied stress. In particular, these 
aspects could be investigated via 3D computational modeling (such as that in [3]). 
However, to carry out such modeling, we have to know the crystallographic mechanism 
of the δ→α crystal lattice rearrangement. The experimental observations and the 
theoretical works on the crystallographic features of α phase and the δ→α transformation 
are reported in [2, 4-18]. Several possible lattice correspondences relating the FCC δ
phase to the monoclinic α phase were first proposed by Olson and Adler [2], and the 
possible twin modes and slip accommodation modes have been studied by various 
researchers [2, 4, 6-8, 10]. However, given the facts that previous studies investigated a 
limited number of possible δ→α crystal lattice rearrangements and that the existing 
theoretical models are insufficient to explain existing experimental observations [8-18], 
the crystallographic mechanism of this transformation is still open for further 
investigation.

In this study, we employ the crystallographic theory of MTs [19, 20], which is an 
advanced version of the traditional geometric theory [21, 22]. We consider all possible 
δ→α crystal lattice rearrangements consistent with the crystal lattice parameters of the 
phases and shuffling of close packed planes. The theoretical analysis provides a selection 
of optimal crystal lattice rearrangements, transformation twins, orientation relations, and 
habit plane orientations of the α phase crystals based on strain energy minimization and 
stable transformation twin formation criteria.

1.1. Elastic Energy Accompanying Martensitic Transformation
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The MT proceeds by diffusionless (displacive) formation of martensitic phase 
“islands” within a parent phase crystal lattice. These islands are different orientation 
domains (variants) of the martensitic phase. Since the transformation results in a crystal 
lattice misfit between the martensitic domains of different orientations and between the 
martensitic domains and parent phase, it generates elastic strain. The elastic strain energy 
of formation of the isolated domains is usually too large to allow the transformation to 
proceed. It is proportional to the volume, V, of the martensitic phase and is of the order of

VE 2
0tvolume ~ εµ , (1)

where tµ  is the typical elastic modulus and 0ε  is the stress-free transformation strain. 

However, this volume-dependent elastic energy can be eliminated if the domains 
aggregate to form a special stress-accommodating domain structure. This structure should 
meet certain conditions as are discussed in the following.

The stress generated by the crystal lattice misfit between the martensitic domains with 
different orientations is completely eliminated if the crystal lattices of these domains 
perfectly fit along their interfaces and thus do not generate interfacial strain energy. This 
optimal configuration is achieved if the domain structure is a multilayer consisting of 
alternating twin-related lamellae of different orientation domains and the interfaces are 
parallel to the twin plane, as shown in Fig. 1. Geometrically, this structure is the same as 
the polytwinned structure with regularly repeated twin boundaries.

Figure 1. Schematic of polytwinned plate consisting of alternating lamellae of two twin-
related martensitic variants.

The macroscopic shape change of this multilayer aggregate in the unconstrained 
(stress-free) state is determined by the domain-averaged transformation strain over the 
aggregate. Since the aggregate is imbedded into the parent phase matrix, its shape change 
caused by the transformation generates elastic strain and thus results in a raise of the 
volume-dependent strain energy (1). However, this part of the strain energy can be 
mostly eliminated as well if the relation between the thicknesses of the twin-related 
domain layers in the aggregate is such that the domain-averaged transformation strain is 
an Invariant Plane Strain (IPS) and the multilayer aggregate is a plate whose habit plane 
is an invariant plane that is not affected by the transformation [19, 23, 24]. To be an IPS, 
the domain-averaged transformation matrix has to be

jiijij nlεδ +=>< Â , (2a)

where δij is the Kronecker delta (i.e., δij = 1 if i = j and δij = 0 if i ≠ j), ε is the magnitude 
of the strain describing the macroscopic shape change, l  is a unit vector in the direction 
of the displacement produced by the IPS, and n is the unit vector normal to the invariant 
plane. In this case, the habit plane interface between the martensite and parent phase 
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normal to n is macroscopically invariant, i.e., it does not generate martensite/parent phase 
misfit at the macroscopic scale, which is a scale greater than the typical thickness of 
lamellar domains, λ . Therefore, the domain-averaged IPS eliminates the long-range 
elastic strain at distances exceeding the domain thickness, λ , and results in the vanishing 
of the volume-dependent strain energy (1). The internal structure of the plate consisting 
of alternating twin-related lamellar martensitic domains parallel to the twin plane is 
illustrated in Fig. 1.

Without a loss of generality, the IPS transformation matrix (2a) can always be written 
as:

jijiijij nnns ns
ˆ εεδ ++=>< A , (2b)

where sε  is the shear component of the shape strain ε, nε  is the normal component, and s

is a unit vector in the shear direction. The strain component nε  characterizes the volume 
change and is a material constant dependent on the crystal lattice parameters of the parent 
and martensitic phases rather than on the transformation mechanism.

The domain structure with the domain-averaged IPS shown in Fig. 1 eliminates only 
the volume-dependent strain energy associated with the long-range strain. The remaining 
part of the strain energy is proportional to the habit plane surface area, S, and is 
associated with the short-range strain localized within a layer adjacent to the plate 
surface, the thickness of the layer being of the same order as the typical thickness of the 
domains, λ , [19]:

SE λεµξ 2
twint1surface = , (3a)

where twinε  is the twin strain that transforms the crystal lattice of an orientation domain 

into the crystal lattice of its twin-related adjacent domain, and 1ξ  is a dimensionless 

coefficient. Since the δ→α transformation of plutonium involves shuffling (see Section 
2), partial dislocations are piled up at the domain boundaries, which modifies Eq. (3a) to:

SSE γξλεµξ 2
2
twint1surface += , (3b)

where 2ξ  is a dimensionless coefficient, and γ is the interface energy associated with the 
partial dislocation distribution on the domain boundaries that is a result of the specific 
shuffling mode involved. It should be noted that 1ξ  and 2ξ  depend on the geometry of 
habit plane and twins. Finding these coefficients requires the explicit solution of the 
elasticity equation.

Finally, there is a remnant of the strain energy generated by the crystal lattice misfit 
along the interfacial boundary at the edge of the martensite plate. The corresponding 
strain energy depends on the thickness of the plate, D, and its perimeter, P:

PDE 22
t3edge εµξ= , (4)

where 3ξ  is again a dimensionless coefficient, whose value is determined by the explicit 

solution of the elasticity equation. This strain energy proportional to the martensite plate 
perimeter, in fact, has the same form as that of a dislocation loop in the habit plane 
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normal to n with a Burgers vector Db ε= , where ε is the shape strain in Eq. (2a) 
determined by domain-averaging [19].

As mentioned above, the lattice correspondences between the δ and α plutonium 
phases are not conclusively known; neither is the crystal lattice rearrangement producing 
a homogeneous single domain of the α phase in the δ→α transformation. The strain 
produced by such a rearrangement is called a Bain distortion, and it has to be determined 
first in order to proceed to the determination of the crystallographic mechanism of the 
transformation and the habit plane orientation. It is assumed that one criterion for a 
choice of the Bain distortion is a strain energy minimization. It is reduced to the 
minimization of the three contributions of the strain energy given by Eqs. (1), (3b) and 
(4).

The volume-dependent contribution to the strain energy (1) vanishes if the domain-
averaged stress-free transformation strain is an IPS. A minimization of the surface-
dependent part of the strain energy (3b) is another criterion for a choice of the Bain 
distortion and determines a choice of the twin-related orientation domain pair comprising 
a martensite plate. The exact energy minimization condition requires the explicit solution 
of (3b). As will be shown, the requirement of a stable transformation twin plays a key 
role in selecting twin pairs as well as the Bain distortion for the plutonium MT.

Finally, a minimization of the edge-dependent part of the strain energy (4) is reduced 
to finding the Bain distortion and the selection of twin-related domain pairs that provide 
the minimum value of the domain-averaged shape strain ε . As discussed above with 
respect to Eq. (2b), the strain component nε  does not depend on a choice of the δ→α 
transformation mechanism. Therefore, the minimization of the strain energy (4) is 
equivalent to finding the types of domains providing the minimum value of the shear 
strain component sε .

The MT does not occur if the first criterion is not met because the positive volume-
dependent contribution dominates the strain energy opposing the transformation. The 
second criterion is related to a minimization of the surface-dependent strain energy 
contribution and is less critical. The third criterion plays a minor role since the edge-
dependent elastic energy is proportional to the plate perimeter and thus provides the 
smallest contribution to the strain energy. The second and third criteria should be 
considered only when the first criterion is met.

In this paper we will focus on the IPS condition in the elastic energy minimization in 
order to eliminate the main contribution to elastic energy. The surface-dependent strain 
energy is considered secondarily. As will be shown, the IPS condition together with the 
stable transformation twin condition drastically narrows the scope of possible crystal 
lattice rearrangement mechanisms to limited numbers that can be further selected by 
taking into account the existing experimental observations.

To satisfy the first criterion, i.e., eliminating the volume-dependent strain energy (1) 
by IPS, we employ the crystallographic analysis proposed by Khachaturyan [19] and 
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further developed by Jin and Weng [20]. This analysis considers the domain-averaged 
transformation strains produced by all possible twin-related orientation domain pairs 
comprising a martensite plate.

If we know a single Bain distortion, say )1(B̂ , the rotation and reflection symmetry 

elements of the FCC δ phase generate the other 23 Bain distortion matrices, )2(B̂ , …, 

)24(B̂ , which are 24 crystallographically equivalent orientation domains of the 

monoclinic α phase. Therefore, there are 276 (24×23÷2) possible twin-related domain 
pairs (only some of which can really form transformation twins). Fortunately, we do not 
have to consider all of them. It is sufficient to consider only 23 different pairs formed by 
any orientation domain (i.e. variant 1) with each of the remaining 23 orientation domains 
and, thus, we need to carry out a comparative analysis of the 23 domain pairs — all other 
pairs are crystallographically equivalent to the considered ones and differ by just a 
symmetry operation of the FCC δ phase. The comparative analysis should consist of two 
steps corresponding to the IPS criterion mentioned above and the stable twin condition. 
The first step is a test whether the individual domain pairs are able to form twins and 
provide the domain-averaged IPS. The domain pairs passing this test are further tested 
against the criteria of a successful formation of a stable twin.

A task of analyzing the 23 domain pairs, i.e., finding the twins that provide IPS, is 
still complicated due to the fact that the choice of the Bain matrix is not unique. The latter 
further increases the number of possible candidates for the optimal Bain distortion pairs. 
This is a formidable task that can be done only by an appropriate computer program. 
Such an analysis is presented in this paper.

1.2. Invariant Plane Strain Transformation

For a given pair of domains produced, for example, by the Bain distortions )1(B̂  and 

)2(B̂ , we first examine if this domain pair can form a transformation twin [20]. It should 
be mentioned here that the transformation twin and deformation twin have different 
natures although they are the same geometrical object. A transformation twin is formed 
from a bi-layer of domains of martensite variants (twin-related domains), the interface 
being a boundary between different variants. A deformation twin is the result of 
mechanical twinning during plastic deformation. The twins considered in this paper are 
transformation-induced twins. If a given pair of domains can form a misfit-free 
multilayer, this domain pair is a set of twin-related variants. For a martensite plate 
consisting of twin-related orientation variants 1 and 2, we present the domain-averaged 
transformation matrix as [19, 20]:

)]2(ˆˆ)1()1(ˆ[ˆˆ
twinplate BRBRA xx −+>=< , (5)

where plateR̂  is the rotation of the polytwinned plate required for a continuity of the lattice 

at the boundary between the plate and the matrix, twinR̂ is the rotation of the second 
orientation domain required for a continuity of the lattice across the twin plane,  and x is 
the volume fraction of the first orientation domain.
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To provide an IPS, the volume fraction x has to be chosen so that the domain-
averaged transformation matrix has a dyadic form given by Eq. (2a). Then the habit plane 
of the polydomain plate is normal to n. The vector lε  describes the macroscopic shape 
change produced by a formation of the martensite plate. By definition, the volume 
fraction x of the domains meets the condition 0 < x < 1. If x providing the IPS is 1 or 0, 
this means that the single domain martensite plate has an invariant plane habit and thus 
eliminates the volume-dependent elastic energy (1). Such a scenario is practically never 
observed. If Eq. (5) is not reduced to Eq. (2) at any x, the orientation domains of the 
chosen pair do not meet the first criterion (IPS condition) and thus should be rejected.

In general, not all of the 23 domain pairs that have been tested can form 
transformation twins, and only a few of the twin-related pairs may be able to provide IPS. 
Among the domain pairs satisfying the first criterion, we determine the optimal Bain 

distortion matrices produced by a twin-related pair, say again, )1(B̂  and )2(B̂  that 
provide IPS. This optimal Bain distortion should provide a stable twin (the stability of 
transformation twins will be discussed in the next section). Once the optimal Bain 
distortion matrix is found, we can predict the type of twin-related domains that produce 
transformation twins. The determination of the volume fraction x predicts the habit plane 

orientation. Finally, the matrix )1(ˆˆ
plateBR  or )2(ˆˆˆ

twinplate BRR determines the orientation 

relations between martensite and parent phase.

1.3. Stable Transformation Twin

We first briefly explain the notations used to describe twins. A twin is conventionally 
described by its twin elements: directional vector pairs, K and η, and scalar s. The 
element K is a designation of the twin plane normal, η the direction of shear, and s the 
magnitude of twin shear (i.e., twin strain twinε  in Eq. (3)). For a given crystal lattice that 

forms twins, there are always two twin solutions [20]: (K1, η1, s) and (K2,η2, s), both of 
which can serve as a twin. We call the twin along η2 direction on K2 plane a conjugate of 
the twin along η1 direction on K1 plane, and vice versa.

Let us consider the Bain distortion matrices of one pair of twin-related martensite 

variants, e.g. )1(B̂  and )2(B̂ . They are continuous functions of the lattice parameters of 

parent and product phase: a0, a, b, c, β. All these parameters are intrinsic parameters, 
which do not depend on the crystal structure rearrangement mechanism. The twins can be 
grouped into two kinds: (1) those whose twin plane and twin shear direction (K,η) 
depend on the specific values of crystal lattice parameters of the parent and product 
phases and change when the latter changes; and (2) those for which K and η depend only 
on the crystallographic symmetry of the parent and product phases and do not change 
under small variations of the lattice parameters. The first kind of twin would result in a 
continuous gradual change in the twin plane orientation with the temperature, 
composition, and other external thermodynamic parameters affecting crystal lattice 
parameters. This is a phenomenon that has never been observed. We will call these twins 
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of unstable geometry unstable twins. The second kind of twins has stable geometry that is 
not affected by gradual change of the crystal lattice parameters and thus by the change of 
the temperature and composition. We call these twins stable twins. Since the stable twins 
are the only ones that have been observed, we analyze below only those crystal lattice 
rearrangement mechanisms that produce stable twins. This requirement of stable twin 
formation serves as the second criterion to select the Bain distortion.  

2. Lattice Correspondence and Bain Distortion

Unlike the traditional cases of the MT in Fe-base alloys where the Bain distortion is 
characterized by a homogeneous strain, the Bain distortion in plutonium is a combination 
of a homogeneous distortion and a shuffling. The FCC δ phase lattice is a three-layer 
structure formed by the ...... ABCABC  stacking of the close-packed (111)δ atomic layers, 

while the monoclinic α phase lattice is a two-layer structure formed by the 
...... BABABA ′′′′′′  sequence of the quasi-close-packed (010)α atomic layers. The latter 

structure is formed by the δ→α crystal lattice rearrangement of the FCC δ phase. This 
rearrangement can be divided into three steps. The first step is a shuffling that leads to the 
formation of a two-layer hexagonal close-packed (HCP) structure ...... ABABAB  from the 

three-layer FCC structure ...... ABCABC  of the δ phase lattice. The FCC→HCP transition 

occurs by rigid body translations of alternating (111)δ atomic layers along any of the 
three partial δ lattice translation vectors: δ]112[6/1 , δ]121[6/1  or δ]211[6/1 . This 

HCP lattice is a transient structure during the δ→α transformation.

The shuffling resulting in the FCC→HCP transition is not unique. There are many 
ways of (111)δ plane shuffling that produce the same transient HCP lattice. These 
shufflings could be any operations of three crystallographically equivalent partial 
translations. In particular, applications of 1m  times δ]112[6/1 , 2m  times δ]121[6/1

and 3m  times δ]211[6/1  to alternating FCC ...... ABCABC  stacking planes produce the 

same transient HCP ...... ABABAB  structure. However, each shuffling producing the same 

HCP lattice gives a net average displacement h  which depends on )( 321 mmm , as 

calculated for each two close-packed layers (period) of the transient HCP lattice:




 ++
++

= δδδ ]211[
6

]121[
6

]112[
6

1 321

321

mmm

mmm
h . (6)

The set of integers )( 321 mmm  gives the period of shuffling as ( )3212 mmm ++  close-

packed layers. It follows from Eq. (6) that all possible vectors h  are mapped onto the 
area covered by the triangle ABC drawn in the close-packed plane and shown in Fig.2. 
The center of this triangle (point “O”) coincides with an FCC lattice site. In Fig. 2, an h
vector starts at point “O” and ends at a point either in the interior or on the sides of the 
triangle. Any vertex of this triangle corresponds to a situation where shuffling occurs by a 
set of partial lattice translations in the (111)δ plane along one of the δ>< 211  directions. 

A point on the sides of this triangle corresponds to shuffling by a set of partial 
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translations along two of the δ>< 211  directions. A point inside this triangle corresponds 

to shuffling involving partial translations along all three δ>< 211  directions.

Figure 2. All possible average displacement vectors h  are mapped onto the area of the 
triangle ABC drawn in the closed-packed plane with its center “O” coinciding with a 

FCC lattice site. An h  vector starts at point “O” and ends at a point within this area. The 

dashed lines indicate special h vectors that provide stable transformation twins.

The displacement vector h  results in the crystal lattice rearrangement )1(Â

corresponding to the macroscopic shear transformation matrix:

δδ ]111[

2
3

)1(ˆ
jiijij vh+=A , (7)

where δ[111]v  is unit vector along [111]δ. The lattice correspondence in the normal 
direction of the basal plane is

αδ ]010[]111[
3
2 →− h . (8)

To produce the crystal lattice of the monoclinic α phase from this transient HCP 
lattice, we have to make second and third steps. The second step is a homogeneous 
transformation of the transient HCP structure, and the third step completing the δ→α 
transformation is a set of periodic (and commensurate) displacements of the plutonium 
atoms from the sites of the transformed HCP structure. By definition, the periodic 
displacements, unlike the shuffling of the (111)δ planes in the first step or the 
homogeneous strain in the second step, do not change the macroscopic shape of the 
transformed volume and thus are not relevant to an elastic energy analysis. However, 
they determine a choice of the unit cell that is the periodically repeated motif of the α
phase lattice. The periods of the displacements are the elementary translations 
determining a unit cell of the α phase. Since a unit cell of the α phase has 16 plutonium 
atoms with 8 atoms in each 'A  and 'B  layers, the unit cell of the transient HCP lattice, 
which is transformed into the unit cell of the α phase lattice in this third step, should also 
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be enlarged to include 8 atoms in each layer. To maintain the two-layer structure, the 
enlargement of the unit cell is along the A and B layers of the HCP lattice. This 
mechanism provides the (111)δ || (010)α orientation relation.

An enlarged unit cell in each layer of the transient HCP lattice meeting these 
requirements is not unambiguous. However, the best choice for the enlarged unit cell in 
the HCP lattice is the one that involves the smallest homogeneous strain transforming a 
unit cell of the transient HCP lattice to that of the α phase. This is because the smallest 
homogeneous strain generates the lowest elastic energy. Examples of different choices of 
unit cells with 8 atoms per close-packed plane, which may transform to the unit cell of 
the α phase by appropriate homogeneous strain, are shown in Fig. 3. The α phase unit 
cell is also shown in Fig. 3. In Fig. 3 the following crystallographic data [10] are used:

δ phase: nma 0.462560 = ,

α phase: nma 0.61991= , nmb 0.48367= , nmc 1.09637= , o79.101=β . (9)

Figure 3. Left: The lattice in the close-packed (111)δ plane of the FCC δ phase, which is 
the same as the closed-packed plane of the transient HCP structure prior to the 
homogeneous transformation. OADC, OAEF, OGHK, and OLMN are examples of 
choices of unit cells with 8 atoms per unit cell of each close-packed plane, which can 
form the unit cell of the α phase in its (010) plane. Right: An α phase unit cell in the 
(010)α plane. The basal plane transformation is characterized by the homogeneous strain 
of a unit cell including 8 atoms in the (111)δ plane to the α phase unit cell. OADC is the 
cell requiring the least basal plane strain and which minimizes the elastic energy of 
transformation. 

The OADC unit cell is the best choice because it requires the minimum strain of the basal 
plane. In the unit cell OADC, δ]101[OA =  and δ]431[2/1OC = , and this results in the 

lattice correspondences:

αδ ]001[]011[ → , αδ ]100[]413[
2

1 → . (10)
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The lattice correspondences (8) and (10) were first proposed in [2] and have been used in 
all later crystallographic works [6, 7, 10]. Using relations (10), the above mentioned three 
partial δ lattice translation vectors, δ]112[6/1 , δ]121[6/1  and δ]211[6/1 , 

correspond to the partial α lattice translation vectors, α]205[24/1 , α]207[24/1  and 

α]201[12/1 , respectively. The b axis of the monoclinic α phase is perpendicular to the 

close-packed plane and stays parallel to the hexagonal axis of the transient HCP structure, 
i.e., the b axis of the α phase is perpendicular to the (111)δ plane.

The homogeneous transformation matrix from the A and B layers of the transient 
HCP lattice to the 'A  and 'B  layers of the α phase lattice can be presented as a product 
of two homogeneous transformation matrices. The first one changes the c parameter of 

the transient HCP lattice, 3/322 0)111( adc == δ , to the b parameter of the monoclinic 

α phase: bac →= 3/32 0 . The corresponding transformation matrix describes a 

uniaxial contraction, )2(Â :

δδδ ]111[]111[

0

0

2

23
)2(ˆ

jiijij vv
a

ab −+=A . (11)

This transformation only changes the interplanar distance of the close-packed layers. It 
does not deform the unit cell within each layer shown in Fig. 3. The next transformation 
matrix provides the lattice correspondences (10) in the close-packed planes and describes 

a planar crystal lattice rearrangement, )3(Â :

δδδδ βδ ]211[]211[

0

0]101[]101[

0

0

6

6sin6

2

22
)3(ˆ

jijiijij vv
a

ac
vv

a

aa −+−+=A

δδβ ]211[]101[

012

sin6262
ji vv

a

ca ++ , (12)

where δ10]1[v  and δ]2[11v  are unit vectors along δ]101[  and δ]211[ , respectively.

Summarizing the effects of all transformations (7), (11) and (12) produced by 
shuffling and homogeneous strain, we obtain the total transformation Bain matrix as:

)1(ˆ)2(ˆ)3(ˆˆ AAAB = . (13a)

Therefore, B̂  is a function of the vector h  and the lattice parameters of δ and α phases, 

( )β,,,,,ˆ
0 cbaahB . In the coordinate system defined by δ]011[//1x , δ]111[//2x  and 

δ]211[//3x , B̂  assumes the form:

B̂



















+

+++−

=

00

21

0

00

2112

0

6

sin

4
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0
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, (13b)
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where 1h  and 2h  are components of the average displacement vector δ),,( 321 hhh=h
defined in Eq. (6) that is confined within the triangle in Fig. 2. In Eq. (13b) the relation 

213 hhh −−=  reflecting the fact that h  is in the δ)111(  plane is used. The correspondence 

matrix Ĉ  can be obtained from the lattice relations (8) and (10) as

















−+++++

−−+−−−

=

3
1

46
1

46
1

4

2
1

2
1

2
1

6

1

8

3

12

7

8

3

12

5

8

3

ˆ

121212

121212

hhhhhh

hhhhhh

C . (14)

It determines the lattice correspondence relating the vectors in real and reciprocal spaces 
in δ parent phase and α phase coordinates:

δα rCr ˆ= , αδ HCH Tˆ= , (15)

where r are the crystal lattice site vectors and H are reciprocal lattice vectors.

3. Crystallographic Analysis of δδδδ→→→→αααα Transformation

3.1. Stable Transformation Twin

As B̂  is a function of the vector h  and the lattice parameters, a0, a, b, c and β of the 
δ and α phases, the twin modes and IPS habit plane orientations are also functions of 
these variables. In particular, they depend on the vector h , which defines the effect of 
shuffling and is confined inside the triangle in Fig. 2. Each vector h  singles out one 
shuffling mode from multiple possible choices. In general, a procedure to check if a pair 
of martensite variants satisfies the IPS condition requires a great number of computations 
because all points in the triangle shown in Fig. 2 should be tested. However, as is shown 
below, the multiplicity of points h  that should normally be tested can be dramatically 
narrowed if we consider only physically meaningful twins formed by domain pairs. By 
“physically meaningful twins” we refer to the stable twins whose twin plane and twin 
shear directions do not change with a variation of the crystal lattice parameters. 
Therefore, we start with a determination of the stress-accommodating shuffling mode that 
produces stable twins. 

For each h vector in Fig. 2 there are 24 Bain distortion matrices, )(ˆ νB  with ν = 1, 

…, 24, corresponding to 24 variants of the monoclinic α phase. The orientation relations 
labeling these Bain matrices are presented in Table A1. These martensite variants provide 

23 crystallographically independent pairs of orientation domains, )(ˆ|)1(ˆ νBB  with ν = 2, 

…, 24. The necessary and sufficient condition for each pair )(ˆ|)1(ˆ νBB  to form a 
transformation twin is (see [20] for details):

( ) ( )[ ] ( ) ( )[ ]( ) 0ˆ1ˆˆ1ˆˆdet 11 =−−− IBBBB νν T
, (16)
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where det(…) defines the determinant of a matrix, and ijijI δ=  is a unity matrix. We can 

find all possible twin pairs among the 23 domain pairs by solving Eq. (16). In general, the 
twin plane and the twin shear direction of each twin pair are functions of the lattice 
parameters and h vector. 

It has been proved that among all possible twin pairs only three, designated as 

)2(ˆ|)1(ˆ BB , )4(ˆ|)1(ˆ BB  and )6(ˆ|)1(ˆ BB , are stable twins, which do not depend on the 

lattice parameters a, b, c and β and thus are not affected by gradual variations of intrinsic 
crystal lattice parameters. These stable twins can be formed only at the special h points 
in the triangle shown in Fig. 2 and the locus of these points is the three δ>< 211

directions, as indicated by dashed lines in this figure. The value of each h point on these 
three directions is designated as











≤≤
≤≤
≤≤

==

)2(ˆ|)1(ˆfor)1(-0.5lineFCon]211[
6

1

)6(ˆ|)1(ˆfor)1(-0.5lineEBon]121[
6
1

)4(ˆ|)1(ˆfor)1(-0.5lineDAon]112[
6
1

),,( 321

BB

BB

BB

h

ρρ
ρρ
ρρ

hhh , (17)

where ρ  is a parameter characterizing the vector h  along δ>< 211 . The twin elements 

of these three stable transformation twins and their corresponding h  vectors are listed in 
Table 1. The numerical values of the twin shear s are evaluated with the lattice 
parameters given in Eq. (9) and are listed in parentheses. It is found that each of the three 
twins, (Κ1, η1, s), is invariant against the variation of ρ. In other words, as long as the h
vector stays in its symmetrical direction δ>< 211  the twin is stable. However for its 

conjugate twin, Κ2 changes direction with the value of ρ as δκ >< 11 , where  

( ) ( )24 +−= ρρκ  (see Table 1). We call the conjugate twin a “partially stable” twin.

In the case of a phase transformation where the transformation does not involve 
shuffling, the twin plane and its shear invariancy is with respect to the lattice parameters 
only. But in the case of plutonium where the transformation involves shuffling, we add 
one more invariancy with respect to the parameter ρ . As long as h  is parallel to a 

specific symmetrical direction, for example, δ>< 211 , the twin plane and its shear 

direction is invariant with the variation of the displacement magnitude. Therefore the 
twin is stable as long as the transformation mechanism both preserves the symmetry of 
the transformation (crystal lattice and shuffling) and allows for variations of the lattice 
parameters or the shuffling magnitude.

Table 1. Stable transformation twins. ( ) ( )24 +−= ρρκ

stable twin

pair:

twin shear 
s = twinε

( ) [ ]αα η11Κ
( ) [ ]αα η22Κ

( ) [ ]δδ η11Κ
( ) [ ]δδ η22Κ

shuffling 
h
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)2(ˆ|)1(ˆ BB β
β

sin
cos2

c

ca +

(0.16015)

( ) [ ]αα 102012

( ) [ ]αα 001001

( ) δδ ]211[101

( ) δδκ ]101[11
δρ ]211[

6
1=h

)4(ˆ|)1(ˆ BB β
β

sin8

415cos4 22

ac

caac −+

(0.07529)

( ) [ ]αα 025205

( ) [ ]αα 302032

( ) δδ ]112[110

( ) δδκ ]110[11
δρ ]112[

6
1=h

)6(ˆ|)1(ˆ BB β
β

sin8

47cos12 22

ac

caac +−

(0.08486)

( ) [ ]αα 702720

( ) [ ]αα 210201

( ) δδ ]121[110

( ) δδκ ]110[11
δρ ]121[

6
1=h

By comparing the Bain distortions generated by the shuffling modes that provide 

stable transformation twins, it is found that the twin )4(ˆ|)1(ˆ BB  with a twin plane of 

(205)α or δ)101(  is the optimum choice. The selection is made using the following 

criteria: (1) the minimum typical transformation strain energy, 00
klijijklC εε ; and (2) the 

minimum second invariant of the deviartoric strain tensor, 

])()()[(
6

1
)

3

1
)(

3

1
(

2

1 2
13

2
32

2
21

0000
2 εεεεεεδεεδεε −+−+−=−−=′ ijqqijijppijJ , where 1ε , 

2ε  and 3ε  are the principal values of the transformation strain, 0
ijε . Under an isotropic 

elasticity assumption, the typical strain energy of the martensitic transformation is

)(2)(
21

2 2
3

2
2

2
1

2
321

00 εεεµεεεν
νµεε +++++−=klijijklC . (18)

Since the transformations with different h  involve the same dilatational component, the 
first term in Eq. (18) is constant for all h  and the differences in typical strain energy for 
different h  are fully described by the second term, )( 2

3
2
2

2
1 εεε ++ . Therefore the 

minimum typical transformation strain energy condition is simplified to 
min )( 2

3
2
2

2
1 εεε ++ . 

The principal values of the transformation deformation are plotted in Fig. 4(a). Figs. 
4(b-c) plot )( 2

3
2
2

2
1 εεε ++  and 2

13
2

32
2

21 )()()( εεεεεε −+−+− , respectively. Figs. 4(b-c) 

show that the transformation distortion along the DA line, or δ]112[ , is smaller than the 

other two directions. Thus the shuffling along the DA line is preferred from the aspect of 
both small transformation strain energy and small deviartoric strain, and the twin 

)4(ˆ|)1(ˆ BB  with ( ) [ ]αα 025205  is the optimum choice among the three stable twins.

Table 1 also shows that among the three possible stable transformation twins, the twin 
pair of variants 1 and 4 has the smallest twin shear ( twinε = s = 0.07529). According to the 

first term in Eq. (3b), this stable twin between variant 1 and 4 is energetically favored 
over the other two.
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Figure 4. (a) The eigenvalues of the Hermitian part of the Bain distortions, (b) 

)( 2
3

2
2

2
1 εεε ++  and (c) 2

13
2

32
2

21 )()()( εεεεεε −+−+−  along DA, EB, and FC, 

respectively.

As will be shown later, the selection of the 1-4 twin pair over the other two pairs is a 
result of the more important consideration  the IPS requirement:  the 1-2 and 1-6 twin 
pairs cannot provide IPS.

It should be mentioned that these three stable transformation twins are also favored 
over other twins, not only from a stability point of view, but also from energetic 
considerations: they have the lowest twin boundary energy. Indeed, in general, the 
shuffling involved in the transformation produces partial dislocations at twin boundaries. 
It can be shown that only these three stable twins can achieve a dislocation-free fit along 
twin boundaries, and thus eliminate the energy associated with partial dislocations.

The experimental observations in [10] fully support the predicted stable 
transformation twin formed by alternating domains of variants 1 and 4 and with α)205(

twin planes. Our α)205(  twin between variants 1 and 4 predicts that these two variants

share a parallel [020]α direction, that their a axis directions are along δ]101[  and δ]011[ , 

respectively, and that the twin plane is co-planar with δ)101( . This prediction is 

confirmed by the observations in [12].

3.2. Invariant Plane Strain

It has been shown that the search is narrowed down to α)205(  twins between variants 

1 and 4, which is the energetically preferred stable transformation twin provided by the 
special vectors δρ ]112[6=h  with ρ varying in the range )1(-0.5 ≤≤ ρ . To determine 

the Bain distortion of the δ→α transformation, we have to determine the optimal 
shuffling mode, i.e., the best choice for the parameter ρ )1(-0.5 ≤≤ ρ . This further 
screening process is done by using the first criterion, the IPS condition.

As discussed in Section 1.2, to provide IPS, the domain-averaged transformation 

matrix >< Â  (Eq. (5)) has to be reduced to the form jiijij nlεδ +=>< Â . The necessary 

and sufficient condition for >< Â  to provide IPS is (again, see [20] for details) is:
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1and,1,1 321 ≥=≤ λλλ , (19)

where iλ  are the eigenvalues of the Hermitian part of the matrix >< Â . (The Hermitian 

part of a matrix is the matrix excluding the unitary part in its polar decomposition.) The 
equation

1),(2 =ρλ x (20)

is a necessary condition for the IPS. For each parameter ρ (vector h ), we have to find a 
special value of the domain volume fraction x that provides Eq. (20).

The normal to the invariant habit plane, n , and the IPS shear vector, lε , are 
determined by the equations

12
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2
3

2
1

32
1

2
3

2
3 11

een λλ
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−
−±−

−= (21)
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−
−

−
−−= 12

1
2
3

2
1

332
1

2
3

2
3

113

11
eel λλ

λλλλ
λλλλε m , (22)

where e1 and e3 are unit eigenvectors of the matrix ( ) ( ) ><>< x,ρx,ρT AA ˆˆ  corresponding 

to the eigenvalues 1λ  and 3λ  at 1),(2 =ρλ x  [19, 20]. As follows from Eqs. (21) and (22), 

in general, there are two IPS solutions for a given transformation deformation. 

The orientation relations between the parent and product phases of the δ→α 

transformation are characterized by both the correspondence matrix Ĉ  and the 

transformation distortion matrix Â . The angle between vectors δr  in the parent phase 

and αr  in the martensite phase is given by






 ⋅= −

−
−

αδ
αδαδ

rCAr

rCAr
rr

1

1
1

ˆˆ

ˆˆ
cos, ,    (23a)

The angle between a plane in the parent δ phase normal to its reciprocal lattice vector, 

δH , and a plane in the α phase  normal to its reciprocal lattice vector, αH , is given by






 ⋅= −

−
−

αδ
αδαδ

HCAH

HCAH
HH

TT

TT
1

ˆˆ

ˆˆ
cos, .   (23b)

( )1ˆˆˆ
plateBRA =  for variant 1,  and, ( )1ˆˆˆˆ

twinplate BRRA =  for variant 2, where plateR̂  and 

twinR̂  are defined in Eq. (5).

Eqs. (20)-(23) solve the problem of the crystallography of the martensitic 
transformation if we know the lattice correspondence and the values of the crystal lattice 
parameters of the α and δ phases at the composition and temperature of the 
transformation. Unfortunately, the literature shows that both the lattice correspondence 
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and the accurate crystal lattice parameters for the δ→α transformation in the plutonium 
alloys are not well known. 

3.3. Dependence of Crystallography on Volume Effect of Transformation

The normal to the invariant habit plane, n, is very sensitive to the lattice parameters, 
a0, a, b, c and β, and especially to the ratio of the unit cell volumes of the phases, 

( ) ( )3
016sin aabcVV βχ δα == . The value χ  depends on the composition of the 

plutonium alloys, the temperature, and other factors. It is shown in the Discussion that the 
real ratio χ  may deviate considerably from the reference value 0χ  calculated by using 

the data in Eq. (9). We will characterize these deviations by the dilatation parameter 
3

0χχδ = , which, in fact, is an uncertainty parameter reflecting an incompleteness or 

inaccuracy of the available experimental data on the crystal lattice parameters of the α
and δ phases at the temperature and composition of transformation. For the plutonium 
alloys studied in this paper, the deviation of δ from 1 should be a physically reasonable 
value. Our calculation shows that the only stable twin mode providing IPS within this 
range of the parameter δ is the stable ( ) [ ]αα 025205 twin, with δ ≥ 1.019 

( 860.0≥δα VV ). The other two stable twins, ( ) [ ]αα 102012  and ( ) [ ]αα 702720  (see Table 

1), can provide IPS only with δ ≥1.059 ( 965.0≥δα VV ) and δ ≥1.092 ( 058.1≥δα VV ),

respectively, which are both too large to be explained by inaccuracies in the crystal lattice 
parameter data.

3.4. Possible Invariant Plane Strain Solutions

For given δ and h  vectors ( 15.0 ≤≤− ρ ), the crystallographic calculation of IPS can 
be carried out to check if an IPS can be attained at any value of the volume fraction x and 
thus to obtain the invariant plane habit orientation n=n(δ,ρ) and x=x(δ,ρ) with 10 ≤≤ x . 
However, since the exact value of the δ parameter is unknown, we will address the IPS 
problem differently. We will find the values of the parameter δ providing the IPS solution 
at different values of ρ and x and consider only those values of δ that are within a 
physically meaningful range, 1<δ<1.025 (from -18.7% to -12.5% volume change). This 
procedure considerably narrows the scope of the possible crystallographic mechanisms of 
the transformation. The next constraint on the IPS solutions is imposed by the observed 
orientation relations. The experiments reveal the parallelisms, δ]101[  || α]100[  and (111)δ
|| (020)α, within the range of  oo 7~5±  [2, 9]. Therefore, the range of the IPS solutions 
can be narrowed further by calculating the orientation relations by using Eq. (23) and 
rejecting the IPS solutions that result in a deviation of the calculated orientation relations 
from the δ]101[ || α]100[  and (111)δ || (020)α larger than the observed deviations.

Fig. 5(a) presents a plot of the dilatation parameter ( )x,ρδδ =  providing an IPS. The 

variation range of δ at a given value ρ (for all possible x) is plotted in Fig. 5(b). We 
discard solutions that require 025.1>δ  (above the dashed line in Fig. 5(b), 
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corresponding to 875.0>δα VV ). The regions corresponding to physically acceptable 

solutions, ( ( ) 025.1, ≤xρδ ) are bounded by dashed lines and highlighted by color contour 

plots in Fig. 5(a), where ( )x,ρδ  assumes a constant value at each contour line.

Fig. 6 presents a plot of the shear component ( )x,ss ρεε =  of the IPS strain ε (see Eq. 

(2b)). The solutions corresponding to ( ) 025.1, ≤xρδ  are bounded by dashed lines. The 

contour lines of ( )x,ρδ  corresponding to that in Fig. 5(a) are also shown. Two points, (ρ
= -0.42, x = 0.5) and (ρ = 0.42, x = 0.5), can be singled out for their minimum value εs = 
0.0126. The shuffling mechanism corresponding to ρ = -0.42 is close to )( 321 mmm =(1 9 

9). The orientation of the invariant habit plane of a martensite plate provided by this 
solution is n = (0.1718, -0.6613, -0.7302). The orientation relations corresponding to this 
solution provides the deviations from δ]101[  || α]100[  and (111)δ || (020)α within the 

observed range [2, 9]: the calculated angle between the α]100[ and δ]101[  directions is 

3.65° for the first IPS solution (4.08° for the second IPS solution), whereas the calculated 
angle between the predicted (020)α and (111)δ planes is 4.28° for both IPS solutions. The 
shuffling mechanism corresponding to ρ = 0.42 is close to )( 321 mmm =(16 5 5). The 

corresponding habit plane orientation of IPS is n = (0.9849, -0.0830, 0.1518). The 
deviations from the nominal orientation relations ( δ]101[  || α]100[  and (111)δ || (020)α) 

are the same as the case of ρ = -0.42.

Figure 5. (a) Contour plot of the dilatation parameter ( )x,ρδδ =  that provides IPS at 

each set of ρ and x. (b) The variation range of parameter δ at given value ρ (for all 

possible x). The physically possible solutions ( ) 025.1, ≤xρδ  are highlighted by color 

contour plots in (a) and bounded by dashed line in (a) and (b).
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Figure 6. Contour plot of the shear component ( )x,ss ρεε =  of the shape strain ε of the 

IPS at each set of ρ and x (see Eq. (2b)). The physically possible solutions (corresponding 

to ( ) 025.1, ≤xρδ  in Fig. 5) are bounded by dashed lines. The contour lines of 

constant δ values (corresponding to that in Fig. 5(a)) are also shown.

The IPS solutions of the habit plane normal directions are obtained for all possible h
vectors ( 15.0 ≤≤− ρ ) providing the stable α)205(  transformation twin. In Fig. 7 we plot 

only the habit plane orientations n of IPS corresponding to ( ) 025.1, ≤xρδ  and 

orientation relations within 5° from δ]101[  || α]100[  and (111)δ || (020)α. The symbols 

“×” indicate the experimentally observed {123}δ, {112}δ and {223}δ habit planes [10, 12, 
13]. The IPS solutions are plotted in different colors according to the dilatation parameter 
δ. Figure 7 shows how sensitive the invariant plane normal is to the value of the 
parameter δ. To provide information on the domain volume fraction x, we highlight the 
solutions corresponding to several constant x values.

Figures 5, 6 and 7 summarize all the information on the orientation relations and 
corresponding habit planes that we have obtained from the possible IPS solutions and 
crystallographic mechanisms that provide for a stable ( ) [ ]αα 025205 stress-

accommodating twin. 

The prediction of the morphology of the martensitic transformation could be 
unambiguous if we had accurate data on the crystal lattice parameters and use the 
minimum strain energy criterion. However, Figs. 5-7 allow one to get this information 
even if the available data are either incomplete or inaccurate. For example, if accurate 
experimental data on the crystal lattice parameters (value δ) and on the volume fraction 
of twins, x, are available, the diagrams shown in Figs. 5-7 determine the shuffling mode 
ρ, the IPS, and the habit plane orientation. Or, if the habit normal direction and the 
volume fraction x are measured, the value of parameter δ and the shuffling mode can be 
obtained. 
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Figure 7. The stereographic projections of all possible IPS habit plane orientations 
provided by the most stable transformation twin, i.e., (205)α twin between variants 1 and 
4.

With the currently available experimental data, the value of the parameter δ can be 
estimated only within a range ( 025.11 ≤≤ δ ), and there are only two direct experimental 
reports on the habit plane orientations. The first reports the habit plane close to {123}δ
[10], and the second reports habit plane characterized by a point within the area between 
{112}δ, {223}δ and {123}δ on the stereographic projection plot [12, 13]. Recent analysis 
also offered indirect evidence of a {111} habit plane [12, 13].

In spite of the limited information and uncertainties mentioned above, the theory 
predicts that the transformation twins involved in the martensitic transformation should 
be ( ) [ ]αα 025205  stable twins. Under these assumptions, all possible IPS solutions 

consistent with the limited experimental data have been found.

Among all possible shuffling modes, there are two simplest modes of shortest period, 
namely double and single elementary shuffling modes corresponding to points “D” and 
“A” in Fig. 2, respectively. For point “D”, its h  vector characterizes a double elementary 
shuffling, )( 321 mmm =(0 1 1), consisting of double partial δ lattice translation vectors 

δ]121[6/1  and δ]211[6/1  with a period of four (111)δ layers. The shuffling 

corresponding to the point “A” is produced by )( 321 mmm =(1 0 0). It is a single 

elementary shuffling resulting in only δ]112[61  partial δ lattice translations with a 

period of two (111)δ layers. It should be noted that this single elementary shuffling 
mechanism has been extensively studied [2, 6, 7, 10] under the name “correspondence 
III” first used in [2]. The complete IPS solutions of these two simplest shuffling modes 
are presented below. 
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3.5. Double Elementary Shuffling

Figure 8. (a) The eigenvalues of the Hermitian part of the domain-averaged 

transformation matrix >< Â and the dilatation parameter δ versus domain volume 
fraction x for double elementary shuffling mode. (b) The deviations from  

α]100[ || δ]101[ and (010)α || (111)δ. (c) The deviation of the IPS habit plane normal 

direction from {123}δ versus domain volume fraction x. (d) The stereographic projections 
of the IPS habit plane normal directions for all possible domain volume fraction x. They 
are clustered around {123}δ and {111}δ, respectively. 

For the double elementary shuffling mode, which is characterized by ρ = -0.5 
( [ ]112121=h ) corresponding to point “D” in Fig. 2, we plot in Fig. 8(a) the 

eigenvalues, iλ , of the Hermitian part of the domain-averaged transformation matrix 

>< Â  versus domain volume fraction x and the corresponding dilatation parameter δ. 
The value of δ varies from 1.019 to 1.027. If the real δ value is known, we can determine 
the volume fraction x and the IPS habit plane orientation.
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To be mentioned is that there are always two IPS solutions for each set of (x, ρ) (see 
Eqs. (21) and (22)). Two solutions of the invariant plane normal direction can be obtained 
by Eq. (21). Eqs. (21), (22), (5), (23a) and (23b) all together give two solutions of the 
orientation relations. These two solutions are called first and second solution for 
convenience. It is found that the gradual change of the dilatation parameter δ (or 
equivalently x) leads to a continuous change in its IPS solutions. The two IPS solutions of 
the invariant strain normal direction and the orientation relations versus x value are 
shown in Fig. 8(b-d).

The calculations are compared with the experimentally observed orientation relations, 

α]100[ || δ]101[  and α)010( || δ)111( , in Fig. 8(b). It plots the deviation angles of the 

α]100[  direction and α)010(  plane from the δ]101[  direction and δ)111(  plane. The first 

solution is close to the α]100[ || δ]101[  and α)010( || δ)111(  orientation relations with 

deviation angles smaller than 2.8° for all x value. The second solution deviates from the 
parallelisms by 6.5°~8.9°. 

The calculated orientations of all invariant habit planes for all possible domain 
volume fraction 10 ≤≤ x  are plotted on the stereographic projections in Fig. 8(d). Fig. 
8(c) plots the deviation angle of the invariant plane normal direction from the 
experimentally observed {123}δ direction. The first solution gives the invariant plane 
close to {123}δ with deviation angle of 6.4°~14.0°. The best fit (6.37°) is obtained with 
the volume fraction x=0.16 (see Fig. 8(c)). The corresponding dilatation parameter 
δ=1.0239 (see Fig. 7(a)). The stereographic projection in Fig. 8(d) clearly shows the first 
solution around {123}δ. It also shows the second solution around {111}δ. Its deviation 
angle from {111}δ is 7.1°~10.2°. The best fit (7.07°) is obtained at x=0.5 with δ=1.0192.
In both cases, the required dilatation parameter is δ≈1.02. Both IPS solutions yield the 
shape strain ε ≈ 0.17.

3.6. Single Elementary Shuffling

For the single elementary shuffling mode, which is characterized by ρ = 1 
( [ ]11261=h ) corresponding to point “A” in Fig. 2, the eigenvalues iλ  and dilatation 

parameter δ are plotted in Fig. 9(a). It shows that iλ  practically does not depend on x. 

The δ value also varies very little for the whole range 10 ≤≤ x  (δ = 1.019~1.020). 

The first solution gives a good agreement with experimentally observed orientation 
relations: the deviation angles are smaller than 1.7° for all x value. The second solution 
does not provide such orientation relations: the deviation angles are greater than 16.3°, 
and thus should be rejected as a possible solution of the MT mechanism.
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Figure 9. (a) The eigenvalues of the Hermitian part of the domain-averaged 

transformation matrix >< Â and the dilatation parameter δ versus domain volume 
fraction x for single elementary shuffling mode. (b) The deviations from the parallelisms 
[100]α || [-110]δ and (010)α || (111)δ. (c) The deviation of the invariant plane normal 
direction from {123}δ versus domain volume fraction x. (d) The stereographic projections 
of the invariant plane normal directions for all possible domain volume fraction x.

The calculated poles of the invariant planes for all possible domain volume fractions 
10 ≤≤ x  are shown at stereographic projections in Fig. 9(d). Fig. 9(c) plots the deviation 

angle of the invariant plane normal direction from the {123}δ direction. The best fit 
(8.40°) is obtained for the first solution at x=0 or 1. The corresponding dilatation 
parameter δ = 1.0204 (see Fig. 9(a)). This IPS solution yields the shape strain ε ≈ 0.33.  
This solution corresponds to a single domain (untwinned) martensitic plate with the 
invariant habit plane, which is not observed.

4. Discussion

There are experimental observations of the orientation relations, transformation twins 
and habit plane normal directions. The observations indicate that orientation relations are 
close to δ]101[  || α]100[  and (111)δ || (020)α within an accuracy of oo 7~5±  [2, 9]. 
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Observations of the regular striations of martensite plates attributed to the (205)α twin 
boundaries have been reported [10, 12]. The observed habit planes are close to {123}δ
[10]. In an absence of accurate crystal lattice parameter measurement for the states where 
the martensitic structures have been observed, we used these observations as a criterion 
for a choice of the crystal lattice rearrangement mechanism. Although the 
crystallographic analysis on twin modes has been presented in a number of papers, they 
are still insufficient to fully explain the observation results. The MT mechanism proposed 
by Zocco et al. predicts the habit plane orientation close to {123}δ [10]. However, this 
prediction is based on a consideration of a limited number of possible crystal lattice 
rearrangements. The theory presented in this study selects the crystal lattice 
rearrangement mechanism considering a significantly wider pool of transformation 
options.

It is shown that the orientation of the invariant plane of a multi-domain martensite 
plate is very sensitive to the values of the crystal lattice parameters and, in particular, to 
the volume change in the MT. Given the fact that the lattice parameters of Pu-Ga alloys 
significantly depend on the gallium concentration, temperature, and heat treatment 
procedure [11, 14-18], any theoretical predictions based on the IPS theory require very 
accurate measurements of the crystal lattice parameters at the states where the 
microstructure is formed. The existing data on the plutonium MT do not provide this 
accuracy.

The dependence of the lattice parameters of the FCC δ phase on gallium 
concentration and transformation temperature can be estimated by extrapolating the 
published data in Fig. 2 of [16]. It is more difficult to estimate the values of the lattice 
parameters for the α phase. Fig. 11 of [15] shows that the MT produces the volume 
change of −20.1% for pure plutonium and −15.9% for Pu-3.4%Ga alloy, but no 
temperature information is provided. The volume change corresponding to the parameters 
(9) that are reported in [10] is −18.7%. These data are used here as a reference state 
corresponding δ =1. The situation is further complicated by the fact that the MT in Pu-Ga 
alloys produces the α� rather than the α phase. The α� phase is an expanded α phase with 
trapped gallium in its substitutional lattice sites [15]. The α� phase is unstable and 
undergoes nanoscale ordering and also changes the composition at even comparatively 
low temperature, which lead to the change of lattice expansion [15]. Thus the lattice 
parameters of α� phase are very sensitive to the sample history (pressure, heat treatment 
regime, etc.). For example, its volume can decrease during annealing at moderate 
temperatures (25-70ºC) [18]. It is usually assumed that the axial ratios of the monoclinic 
α� phase are the same as those of the α phase. Experimental measurements for several
different gallium concentrations in Fig. 32 of [18] shows that such assumption seems 
reasonable.

Ref. 10 gave the first direct evidence of transformation twins within α phase plates 
based on the TEM, electron diffraction, and a crystallographic analysis. The values of the 
lattice parameters were obtained with a δ→α volume change of −18.7% by assuming the 
same axial ratios of the monoclinic α structure as those for the pure plutonium system 
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[10]. Recently, it has been pointed out [15, 18] that the alloy used in [10] was Pu-3.4%Ga 
alloy.

Several other factors also affect the lattice parameters [15]. One is the heterogeneous 
Ga distribution formed as a result of diffusion from α� phase to the surrounding δ phase. 
(These heterogeneities will cause variations in the lattice parameters of both the α� and δ
phases [16].) The other factors are the ordering of gallium in the α� phase [25], which 
relaxes the lattice expansion, and the formation of vacancies or vacancy clusters due to 
self-irradiation damage. To take into account this uncertainty in volume change, we have 
used the dilatation parameter δ characterizing the relative deviation of the transformation-
induced volume change with respect to that of the “standard reference state” 
characterized by the most recent crystal lattice parameters (9) taken from [10]. Using 
these data makes it possible to compare our results with those obtained in [10]. In this 
paper we set a limit range of 1≤δ≤1.025 (from -18.7% to -12.5% volume change) that, we 
believe, covers the physically possible value for δ→α MT.

In this paper, we considered all possible transformation mechanisms associated with 
twin formation and shuffling of close-packed (111)δ layers in the FCC δ phase lattice 
during the transformation. Since the invariant plane orientations, and even the existence 
of IPS, are very sensitive to the volume change of MT, it is not feasible to directly search 
for the twin pair that provides an IPS, as is conventionally done when the 
crystallographic data are accurately determined. Instead, we first search for the 
transformation twin mode because transformation twins do not depend on the 
transformation volume change, which is the main uncertainty factor. To determine the 
twin mode, we analyze all twin-related pairs formed by the 24 variants of α phase 
structural domains with the Bain distortion produced by all possible shuffling modes.

As a result of this search, we found three pairs of twin-related domains that can 
produce the stable transformation twins. Unlike other possible twins, the orientation of 
the twin plane of the stable twins is fixed, i.e., it does not change gradually upon gradual 
changes of the crystal lattice parameters with the alloy concentration. There is also an 
energy argument in favor of the stable twins: only the stable transformation twins can 
form low energy dislocation-free twin boundaries despite of the generation of partial 
dislocations associated with the transformation shuffling. All other twin boundaries 
would be decorated by ultra-dense distribution of partial dislocations. Therefore, the twin 
boundaries of these three stable twins should have the lowest twin boundary energy. 
Among these three stable twins, the α)205( twin is selected because it is the only stable 

twin that can produce the IPS. The α)205( twin also has a smaller transformation strain 

energy and a smaller deviatoric strain than the other two stable twins. This prediction is 
fully supported by experimental observations. 

By taking into account the uncertainty in volume change, we found all possible 
orientations of invariant planes for the MT involving α)205(  stress-accommodating 

twinning. All possible IPS solutions at ( ) 025.1, ≤xρδ , which give the orientation 
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relations close to  α]100[ || δ]101[  and α)010( || δ)111(  (deviation less than 5°), are 

presented. These results provide a set of possible solutions. To find which of them 
corresponds to the transformation mode for a given system, more accurate measurements 
of the crystal lattice parameters for this specific system is required.

A lack of experimental measurements disallows a decisive selection of shuffling 
parameter ρ  for  ( ) [ ]αα 025205  stable twins. Under such circumstance, two special 

shuffling modes are chosen to describe possible MT mechanisms; their IPS solutions are 
presented in detail. They are the simplest shuffling modes of the shortest period, single 
and double elementary shuffling modes. In terms of Eq. (6), they correspond to 

)( 321 mmm =(1 0 0) and )( 321 mmm =(0 1 1), respectively. 

It is worth noting that the shuffling that involves a long period could be also studied 
by considering the closest short-period simple elementary shuffling mode. For example, 
the shuffling of )( 321 mmm =(1 9 9) that produces the minimum shear strain, in fact, is a 

faulted double elementary shuffling )( 321 mmm =(0 1 1) with “shuffling fault” repeating 

every 38 (111)δ layers; its general behavior could be understood based on the behavior of 
the double elementary shuffling mechanism. Thus simple shuffling modes are 
representative of a larger pool of shuffling mechanisms and chosen for further 
investigation.

The double elementary shuffling mode corresponding to )( 321 mmm =(0 1 1) could be 

one of the optimum modes. The predicted habit planes calculated with the use of this 
mode are in agreement with the experimental observation. They are close to the observed 
{123}δ with deviation angle of 6.4°~14.0°. The best fit (6.37°) is obtained at x=0.16. It 
yields IPS shape strain ε ≈ 0.17. The required dilatation parameter δ≈1.02, which is 
within the acceptable range.

An alternative simple mechanism is a single elementary shuffling (in fact, it was also 
studied in [10]).  Our analysis predicts the IPS habit planes close to {123}δ with a 
deviation angle of 8.4°~13.1° . The solution obtained in [10] also follows from our 
analysis and is highlighted in Fig. 9(d). However, the best fit (8.4° deviation) for a single 
elementary shuffling is obtained not for the solution in [10] involving the 

α)205( twinning but for a single-domain plate that has no accommodation twins at all 

(x=0). It yields IPS shape strain ε ≈ 0.33. The required dilatation parameter is δ ≈1.02. 
This single-domain solution would be more preferable than the multi-twin solution 
obtained in [10] because the former has a lower strain energy: the twinned IPS plate 
considered in [10] always has a higher strain energy than a single-domain IPS plate with 
the same habit plane. However, most of α martensitic plates seem to contain 
transformation-induced twins. If this observation is accurate, the mechanism based on a 
single elementary shuffling should be rejected. 

It should be emphasized that the shuffling involved in MT process adds additional 
configurational degrees of freedom and thus considerably complicates the 
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crystallographic analysis because, in general, it generates partial dislocations at the 
boundaries of twin-related domains.

Both the MT mechanisms which involve single and double elementary shuffling 
modes require a dilatation parameter δ ≈1.02. This corresponds to a ~6% larger volume 
unit cell of the α phase than that determined by the parameters (9). Given the uncertainty 
in the determination of the lattice parameters discussed above, δ ≈1.02 is a reasonable 
number.

To provide more insight into the effect of δ, we also present the calculation result 
with δ=1, i.e., assuming the lattice parameters given in Eq. (9) be accurate. In particular, 
we carry out the crystallographic analysis for 7 simplest shuffling modes corresponding 
to a single shuffling (points “A”, “B”, “C”), double shuffling (“D”, “E”, “F”) and triple 
shuffling (“O”) in Fig. 2. In fact, four of the above shuffling mechanisms have been 
extensively studied [2, 6, 7, 10] under the names first used in Ref. 2: correspondence I 
(“C”), correspondence II (“B”), correspondence III (“A”), and correspondence IV (“O”). 
In Table A2 we list the transformation matrices produced by these 7 shuffling modes, 
which can be obtained by substituting the corresponding h  vectors (6) and 
crystallographic data (9) into Eq. (13). The transformation matrices are given for 
convenience in both the coordinate system defined by δ]011[//1x , δ]111[//2x , 

δ]211[//3x  and the conventional coordinate system described by the cubic axes of the 

FCC δ phase. The corresponding eigenvalues are also listed there. In Table A1, we list 
the 24 variants of the α phase. It is found that the double (“D”, “E”, “F”) and triple (“O”) 
shuffling modes cannot provide IPS with δ=1. There are 5 twin pairs involving single 
shuffling modes (“A”, “B”, “C”) that provide 14 IPS solutions. They are listed in Table 
A3 and numbered 1, …, 14. The stereographic projections of the normal directions of the 
14 invariant planes are plotted in Fig. A1(a) of Appendix. Their deviation angles from 
{123}δ are plotted in Fig. A1(b). As shown in Fig. A1, some of the 14 invariant planes 
are very close to the experimentally observed {123}δ, e.g., No. 1 and No. 3 invariant 
planes deviate from {123}δ direction by 1.192o and 2.203o, respectively. However, none 
of the 5 twin pairs that provide IPS in Table A3 coincide with the experimentally 
observed (205)α twin. These facts indicate that unless the crystal lattice parameters of the 
α and δ phases in the observed microstructure deviate from the parameters in Eq. (9) 
corresponding to δ=1, and thus δ ≠ 1, the strain-accommodation leads to an apparent  
contradiction with experimental observation.

5. Conclusion

The crystallographic analysis of MT mechanisms of the δ→α transformation takes 
into account several factors. They are the layered character of the crystal structure of the 
α phase, its susceptibility to a formation of stacking faults, possible uncertainty in a 
determination of the transformation volume change, and the strain energy minimization
condition. It is shown that a requirement of the stability of transformation twins sharply 
reduces a number of possible crystal lattice rearrangement mechanisms. The stable twins 
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have perfect twin boundaries free of partial dislocations in spite of the shuffling involved 
in the δ→α transformation and thus have smaller interfacial energy.

The analysis of twin stability and the IPS condition within physically reasonable 
range of parameter 025.1≤δ  predicts the (205)α or δ)101(  stable transformation twins 

formed by  twin-related  variants 1 and 4.

The IPS solutions turn out to be highly sensitive to the value of δ.  Since the 
parameter δ varies for plutonium alloys with different composition, transformation 
temperature, and depends on other factors, all IPS solutions within the range, 1 
< 025.1≤δ  , are obtained for the cases where a deviation from the orientation relations 

δ]101[  || α]100[  and (111)δ || (020)α is less than 5o
.  The results are summarized in Figs. 

5-7.  They provide sufficient information to determine the MT mechanism if accurate 
experimental measurements of lattice parameters, habit plane orientation, and the domain 
volume fraction in martensite plate are available.

Two simplest shuffling modes are singled out as possible MT mechanisms: the single 
elementary shuffling mode (“A”) that has been studied in [10] and the double elementary 
shuffling mode (“D”). The single elementary shuffling is produced by the δ]112[6/1

partial lattice translation. The double elementary shuffling is produced by two alternating 
partial lattice translations, δ]121[6/1  and δ]211[6/1 . Both shuffling modes produce 

the (205)α stable twin, the α]100[ || δ]101[  and α)010( || δ)111(  orientation relations, and 

the invariant habit planes close to {123}δ. However, the double elementary shuffling 
produces smaller Bain distortion, smaller IPS shape strain, and invariant habit plane 
closer to the {123}δ than the single shuffling mode does, so it is preferred.
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Appendix

Table A1. Calculated lattice transformation matrices for δ→α phase transformation.

Deformation matrix in 

coordinates δ]011[//1x ,

δ]111[//2x , δ]211[//3x

Deformation matrix in
δ cubic coordinates

Eigenvalue

A
  .94764   .27675   .07585
-.00000   .90555  -.00000
-.00000  -.16745   .94722

  .75920  -.18845  -.12255
  .08131  1.02895   .01583
  .06504   .06504  1.01227

  .76213
  .98001
 1.08830

B
  .94764  -.30356   .07585
  .00000   .90555  -.00000

.00000  -.16745   .94722

  .99611   .04846   .11436
-.15560   .79204  -.22108
  .06504   .06504  1.01227

  .78071
  .91530
 1.13752

C
  .94764   .02682   .07585
  .00000   .90555  -.00000

.00000   .33489   .94722

  .97963   .03199   .09789
  .09768  1.04532   .03220
-.17176  -.17176   .77546

  .77093
  .94279
 1.11836

D
  .94764  -.13837   .07585
-.00000   .90555  -.00000
-.00000   .08372   .94722

  .98787   .04023   .10612
-.02896   .91868  -.09444
-.05336  -.05336   .89387

  .83190
  .97330
 1.00390

E
  .94764   .15178   .07585
  .00000   .90555  -.00000

.00000   .08372   .94722

  .86942  -.07823  -.01233
  .08949  1.03714   .02402
-.05336  -.05336   .89387

  .85110
  .91499
 1.04380

F
  .94764  -.01341   .07585
 0.00000   .90555  -.00000
 0.00000  -.16745   .94722

  .87765  -.06999  -.00409
-.03715   .91050  -.10262
  .06504   .06504  1.01227

  .84036
  .93843
 1.03073

O
  .94764  -.00000   .07585
 0.00000   .90555  -.00000
 0.00000   .00000   .94722

  .91165  -.03600   .02990
  .00779   .95544  -.05768
-.01389  -.01389   .93333

  .90555
  .91027
  .98612
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Table A2. Definition of 24 variants of the α phase.

variant α]001[ α]010[ variant α]001[ α]001[
1 [ -1  1  0 ]δ [  1  1  1 ]δ
2 [ -1  1  0 ]δ [ -1 -1 –1 ]δ
3 [  1  0 -1 ]δ [  1  1  1 ]δ
4 [  1  0 -1 ]δ [ -1 -1 –1 ]δ
5 [  0 -1  1 ]δ [  1  1  1 ]δ
6 [  0 -1  1 ]δ [ -1 -1 –1 ]δ
7 [  1 -1  0 ]δ [ -1 -1  1 ]δ
8 [  1 -1  0 ]δ [  1  1 -1 ]δ
9 [ -1  0 -1 ]δ [ -1 -1  1 ]δ
10 [ -1  0 -1 ]δ [  1  1 -1 ]δ
11 [  0  1  1 ]δ [ -1 -1  1 ]δ
12 [  0  1  1 ]δ [  1  1 -1 ]δ

13 [  1  1  0 ]δ [ -1  1 -1 ]δ
14 [  1  1  0 ]δ [  1 -1  1 ]δ
15 [ -1  0  1 ]δ [ -1  1 -1 ]δ
16 [ -1  0  1 ]δ [  1 -1  1 ]δ
17 [  0 -1 -1 ]δ [ -1  1 -1 ]δ
18 [  0 -1 -1 ]δ [  1 -1  1 ]δ
19 [ -1 -1  0 ]δ [  1 -1 -1 ]δ
20 [ -1 -1  0 ]δ [ -1  1  1 ]δ
21 [  1  0  1 ]δ [  1 -1 -1 ]δ
22 [  1  0  1 ]δ [ -1  1  1 ]δ
23 [  0  1 -1 ]δ [  1 -1 -1 ]δ
24 [  0  1 -1 ]δ [ -1  1  1 ]δ
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Table A3. Invariant Plane Strain generated by the twin pairs of simple shuffling modes.

Twin pair information: A shuffling, variants 1 and 7 with shear S= .20495
      Twin element:

α coordinate:  (          K1         )α [           η1           ]α
             (          K2         )α [          η2            ]α

(  .00000   .25000 -1.00000)α [ 1.00000  -.16843  -.04211]α
( 1.00000  -.01056  -.84742)α [ -.62500  1.00000  -.75000]α

δ coordinate:   (          K1         )δ [           η1           ]δ
         (          K2         )δ [           η2           ]δ

(  .00000  -.00000  1.00000)δ [  .35143  -.93621   .00000]δ
(  .23911  -.97099   .00000)δ [ -.00000  -.00000  1.00000]δ

Habit planes: 
Type I twin: ε=0.30387 εn=-0.18715 ετ=0.23939

x:(1-x)= 0.771093:0.228907
No. 1   (  .81391   .52098   .25715)δ [ -.57992   .70165   .41400]δ
No. 2   ( -.91273   .34022   .22624)δ [  .40705   .80497   .43166]δ

x:(1-x)= 0.228907:0.771093
(  .81391   .52098  -.25715)δ [ -.57992   .70165  -.41400]δ
(-.91273   .34022  -.22624)δ [  .40705   .80497  -.43166]δ

Type II twin: ε=0.30412 εn=-0.18715 ετ=0.23971
x:(1-x)= 0.790654:0.209346

No. 3   (  .81565   .50342   .28511)δ [ -.57722   .67476   .45990]δ
No. 4   ( -.91095   .32661   .25200)δ [  .41066   .77593   .47884]δ

x:(1-x)= 0.209346:0.790654
( -.81565  -.50342   .28511) [  .57722  -.67476   .45990]δ
(  .91095  -.32661   .25200) [ -.41066  -.77593   .47884]δ

Twin pair information: A shuffling, variants 1 and 13 with shear S=  .23813
(-1.00000  -.50000  -.50000)α [  .45159   .09682 -1.00000]α
(  .18818  -.00874 -1.00000)α [-1.00000  -.72727  -.18182]α

( -.00000 - 1.00000  -.00000) [ -.67120  -.00000   .74128]δ
( -.46440  -.00000   .88563) [ -.00000 -1.00000  -.00000]δ

Habit planes: 
Type I twin: ε=0.29915 εn=-0.18715 ετ=0.23338

x:(1-x)= 0.781989:0.218011
No. 5   (  .83343   .45277   .31684)δ [ -.55254   .69273   .46350]δ
No. 6   ( -.90577   .35551   .23063)δ [  .42365   .74732   .51189]δ

x:(1-x)= 0.218011:0.781989
(  .83343  -.45277   .31684)δ [ -.55254  -.69273   .46350]δ
( -.90577  -.35551   .23063)δ [  .42365  -.74732   .51189]δ

Type II twin: ε=0.30145 εn=-0.18715 ετ=0.23632
x:(1-x)= 0.770408:0.229592

No. 7   (  .83502   .47140   .28376)δ [ -.55012   .72472   .41491]δ
No. 8   ( -.90124   .37909   .20990)δ [  .43321   .77699   .45674]δ

x:(1-x)= 0.229592:0.770408
(  .83502  -.47140   .28376)δ [ -.55012  -.72472   .41491]δ
( -.90124  -.37909   .20990)δ [  .43321  -.77699   .45674]δ

Twin pair information: B shuffling, variants 1 and 7 with shear  S=  .47271
(  .00000   .25000 -1.00000)α [ 1.00000  -.16843  -.04211]α
( 1.00000  -.01056  -.84742)α [ -.62500  1.00000  -.75000]α

( -.00000   .00000  1.00000)δ [ -.81677   .57697  -.00000]δ
( -.90000   .43589  - .00000)δ [ -.00000   .00000  1.00000]δ

Habit planes:
Type I twin: ε=0.24319 εn=-0.18715 ετ=0.15530

x:(1-x)= 0.569466:0.430534
No. 9   (  .42863   .85809   .28277)δ [  .59023  -.50291   .63144]δ
No. 10 (  .10901  -.96418   .24183)δ [  .72125   .24413   .64822]δ

x:(1-x)= 0.430534:0.569466
 ( -.42863  -.85809   .28277)δ [ -.59023   .50291   .63144]δ
 ( -.10901   .96418   .24183)δ [ -.72125  -.24413   .64822]δ

Twin pair information: B shuffling, variants 1 and 19 with shear S=  .43578
(  .66667  -.33333 -1.00000)α [-1.00000   .57591  -.85864]α
( -.15256   .07837 -1.00000)α [ 1.00000  -.88889  -.22222]α

(-1.00000   .00000  -.00000)δ [  .00000  -.39160   .92013]δ
(  .00000  -.31364    .94954)δ [-1.00000   .00000  -.00000]δ

Habit planes:
Type II twin: ε=0.25875 εn=-0.18715 ετ=0.17868

x:(1-x)= 0.579523:0.420477
No. 11 ( -.21886  -.81545  -.53585)δ [ -.45260   .57136  -.68462]δ
No. 12 ( -.20043   .96491  -.16963)δ [ -.46106  -.24567  -.85268]δ

x:(1-x)= 0.420477:0.579523
(  .21886  -.81545  -.53585)δ [  .45260   .57136  -.68462]δ
(  .20043   .96491  -.16963)δ [  .46106  -.24567  -.85268]δ

Twin pair information: C shuffling, variants 1 and 13 with shear S=  .38479
( 1.00000   .50000   .50000)α [  .53049  -.06098 -1.00000]α
(  .37268   .03415 -1.00000)α [ 1.00000   .80000   .40000]α

(  .00000  1.00000   .00000)δ [ -.72833  -.00000   .68523]δ
( -.86065  -.00000   .50920)δ [  .00000  1.00000   .00000]δ

Habit planes:
Type I twin: ε=0.26137 εn=-0.18715 ετ=0.18246

x:(1-x)= 0.535087:0.464913
No. 13 ( -.13822  -.42942  - .89246)δ [ -.09068  -.89184   .44316]δ
No. 14 (  .01933  -.40747   .91301)δ [ -.16418  -.90208  -.39912]δ

x:(1-x)= 0.464913:0.535087
( -.13822   .42942  -.89246)δ [ -.09068   .89184   .44316]δ
(  .01933   .40747   .91301)δ [ -.16418   .90208  -.39912]δ
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Figure A1. (a) The stereographic projections of the normal directions of 14 possible habit 

planes (°) obtained from our calculations and the experimentally observed habit plane 
normal direction: X (123)δ. (b) The deviation angles of the calculated habit plane normal 
directions from (123)δ. Some of the deviation angles are very small, for example, 1.192°
(No. 1), 2.203° (No. 3), 2.883° (No. 11), 4.196° (No. 7), 5.773° (No. 5), and 6.933° (No. 
5).


